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Abstract: As network attacks are constantly and dramatically evolving, demonstrating new patterns,
intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been
actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS
in order to accurately and promptly detect unknown types of attacks (i.e., zero-day attacks) and
also alleviate the burden of the laborious labeling task. Although the autoencoders are effective
in detecting unknown types of attacks, it takes tremendous time and effort to find the optimal
model architecture and hyperparameter settings of the autoencoders that result in the best detection
performance. This can be an obstacle that hinders practical applications of autoencoder-based
NIDS. To address this challenge, we rigorously study autoencoders using the benchmark datasets,
NSL-KDD, IoTID20, and N-BaIoT. We evaluate multiple combinations of different model structures
and latent sizes, using a simple autoencoder model. The results indicate that the latent size of an
autoencoder model can have a significant impact on the IDS performance.

Keywords: IDS; NIDS; ML-NIDS; autoencoders; deep-learning models; model design; unsupervised
learning Algorithms; IoT

1. Introduction

It is critical to defend network systems and information assets from network attacks,
and there exist various techniques to deal with network attacks. Among those, public key
cryptography and digital certificates can be used to protect network systems by enabling
source authentication. These cryptographic techniques make it possible to verify whether
network traffic is originated from a trusted source or not. Thus, we can filter out malicious
traffic from untrusted sources. With the advent of quantum computing, classical public
key cryptography will face limitations in terms of security [1], thus post-quantum public
key cryptography is being developed to replace them [2,3]. In addition, research on public
key certificate for constructing public key infrastructure in post-quantum public key cryp-
tosystems is also conducted [4]. Despite such cryptographic countermeasures, it may be
possible for attackers to compromise and misuse legitimate hosts for her attacks. Unfor-
tunately, in this attack scenario, source authentication based on public key cryptography
and digital certificates has a limitation that it cannot filter attack traffic from the host that
is cryptographically legitimate but compromised by the attacker. To address this limita-
tion, network intrusion detection systems are widely used as an effective countermeasure
against network attacks.

Network intrusion detection systems using machine-learning or deep-learning tech-
niques (simply called ML-NIDS) have gained a lot of attention in intelligently monitoring
network traffic for highly accurate detection [5,6]. ML-NIDS can be divided into two
categories: the signature-based method and the anomaly-based method. The signature-
based ML-NIDS method generally assumes that pre-labeled attack traffic data are made
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available in advance, and learns those known intrusion patterns using supervised learning
algorithms [7,8], such as SVM [9,10] and Decision Tree [11]. Khan et al. [12] used a particle
swarm optimization method to select the optimal feature subset from a given dataset in
terms of detection accuracy. The authors then evaluated several machine-learning algo-
rithms such as random forest and neural network as classifiers using KDD Cup 99 [13] and
NSL-KDD [14] datasets. During the last decade, various deep-learning algorithms have
been used for more accurately classifying network attacks. Salama et al. [15] leveraged a
deep belief network (DBN) for dimensional reduction and applied SVM to detect the attack
in the NSL-KDD data. Kim et al. [16] built a NIDS using LSTM (Long Short-Term Memory)
networks. Alom et al. [17] proposed a DBN composed of stacked Restricted Boltzmann
Machines (RBMs). This approach was evaluated with the NSL-KDD data set, and achieved
an accuracy of 97.5%.

However, with the continuous development of new attack techniques, network attacks
keep evolving into new patterns [18], and this makes it infeasible to predict previously
unseen attack patterns. Due to unpredictable attack fashions, traditional signature-based
NIDS, relying only on previously known attack patterns, encountered limitations in de-
tecting unknown and sophisticated attacks in real time [19]. Moreover, signature-based
methods rely on pre-labeled train data, but the labeling process generally needs tremendous
human efforts.

These limitations were addressed by the anomaly-based approach, which enables us
to quickly detect and respond to unknown attack patterns to stabilize network operation
while reducing human intervention [20–24]. The anomaly-based approach generally learns
normal patterns in an unsupervised manner and detects anomaly samples whose patterns
significantly deviate from the normal ones. For instance, the one-class SVM method regards
the majority of the data located densely within a specific area as normal and a few outliers
as abnormal. One-class SVMs [23] and OptiGrid clustering-based methods [24] were used
to detect attack traffics.

Several groups of researchers recently developed NIDS using autoencoders, a generative
deep-learning model consisting of an encoder and a decoder [25–27]. Given an input of
M-dimensional vector, the encoder compresses it into a latent vector represented as a
N-dimensional vector where M > N, and the decoder subsequently reconstructs the
compressed latent vector back to the M-dimensional vector (see Figure 1). An autoencoder-
based NIDS trained with only normal traffic data is expected to recover any given input as
close as possible to the learned normal patterns. Therefore, we can classify an input instance
as an attack if its reconstruction error is larger than a predefined threshold; otherwise,
we can classify the input instance as normal. In this fashion, an autoencoder-based NIDS
is capable of detecting unknown types of attacks when their patterns deviate from the
learned normal patterns.

Figure 1. The overall process of intrusion detection when using the dimension reduction (i.e.,
Encoder) and reconstruction (i.e., Decoder) methods of autoencoders.

Despite the effectiveness of autoencoders in detecting unknown types of attacks,
the detection performance of an autoencoder-based NIDS can be very sensitive to the
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architecture and hyperparameter settings of the underlying autoencoder model. Thus, it is
critical to find the optimal configurations of autoencoders that can reach the best detection
performance. Most of the previous papers have reported manually obtained best models
by conducting numerous experiments with particular data sets. Such manual processes
generally take tremendous time and effort and also have to be repeated as data changes.
This may result in considerable delays in the development of an autoencoder-based NIDS
and consequently degrades the practical applicability of autoencoders.

When implementing an autoencoder-based NIDS, it is required to make decisions
related to the following model design issues:

• How many hidden layers and how many neurons for each layer are necessary? Is a
bigger model better for intrusion detection?

• What dimension of the latent layer is appropriate to represent the data? For instance,
the model may not represent the data well if its latent layer has only one neuron. In
that case, the latent layer is likely to be too generic to characterize the data. On the
other hand, the model would not benefit the advantage of generalization that occurs
during the compression/reconstruction process if its latent layer contains an excessive
number of neurons.

• How do we set a threshold that divides the normal and abnormal data, when labeled
data are not available?

• What metrics are best to represent the difference between the input and its output
(e.g., L1, L2, Cross-Entropy)?

To our knowledge, these critical engineering issues have been little studied.
This paper makes three contributions. First, we present the engineering issues in the

application of autoencoders for anomaly-based NIDS. Second, we investigate how the
model size and the latent size of autoencoders have an impact on the intrusion detection
performance. Specifically, we design and perform experiments to test the efficacy of some
of the aforementioned factors using benchmark datasets that contain attack traffic data
collected from either conventional or IoT networks. Finally, we analyze the experiment
results and report the findings.

This paper is organized as follows. Section 2 reviews the related work. We describe
the data used for our study in Section 3 and the evaluation methods in Section 4. Section 5
presents our experiment results followed by discussions. We conclude with a summary
and suggestions for future work.

2. Related Work

This section reviews the previous works in ML-NIDS. First, we describe traditional
works that use deep-learning and recent works that employ ensemble learning which can
boost the IDS performance when combined with deep-learning algorithms. Second, we
look into autoencoders for feature extraction to enhance the classification performance.
Third, we review autoencoder-based network intrusion detection systems.

2.1. Intrusion Detection with Deep-Learning and Ensemble Learning

There exists literature on network intrusion detection using deep-learning techniques,
such as restricted Boltzmann machine (RBM), deep Boltzmann machine (DBM), deep belief
network (DBN), and deep neural network (DNN). Kim et al. [16] proposed an IDS based on
recurrent neural networks (RNN), where a LSTM (long short-term memory) architecture
was applied to the RNN. Tang et al. [28] designed an IDS based on deep neural networks
(DNN) for flow-based anomaly detection in software-defined networking environments.

Several intrusion detection methods based on ensemble learning and deep-learning
are presented. Zhang et al. [29] proposed ML-NIDS based on multi-dimensional feature
fusion and an ensemble learning approach. This method extracts several basic feature
datasets from raw data and then constructs multiple comprehensive feature datasets by
combining the basic feature datasets. The comprehensive feature datasets are used to train
different base classifiers constituting the ensemble learning model. Yong et al. [30] studied
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ensemble learning approaches to detecting the webshell attack in IoT networks. Specifi-
cally, the authors compared the effectiveness of ensemble machine-learning approaches
under several different settings: an ensemble of either homogeneous or heterogeneous
classification models. Hemalatha et al. [31] proposed a malware detection method based on
deep learning. This method transforms program binary files into two-dimensional images
and used a pretrained deep-learning model called DenseNet to classify the binary images.
The authors additionally addressed the class imbalance issue typically shown in malware
datasets by employing the reweighted cross-entropy loss function.

2.2. Autoencoders for Feature Reduction

Diverse autoencoder models have been leveraged as feature learning methods and
combined with supervised learning algorithms to detect attack classes. For instance, Li
et al. [32] presented an ML-NIDS that uses an autoencoder for dimension reduction and
a DBN for classification. The DBN consists of multiple layers of RBMs and an additional
layer of BP neural network as a classifier which distinguishes malicious samples from
normal samples. Their system was evaluated on the KDD Cup 99 dataset, and the results
showed that combining an autoencoder and DBN can achieve better detection accuracy
than working with DBN alone. Tao et al. [33] proposed a data fusion approach based on
the Fisher score and deep autoencoder to reduce the dimensionality of data. Using the
KDD Cup 99 dataset, it was confirmed that integrating the deep autoencoder as a feature
extraction method can improve the accuracy of classification algorithms such as J48, the
backpropagation neural network, and SVM.

Although the KDD Cup 99 dataset was popularly used to evaluate NIDS in 2000s,
it has shortcomings of contains duplicate records in training and test sets, making it
inadequate for benchmark data [8]. Hence, the NSL-KDD data were created by removing
redundancies in the training and test sets of the KDD set [14]. Javaid et al. [34] developed
an ML-NIDS using a combination of sparse autoencoder and SoftMax regression (SMR)
method. Through evaluations using the NSL-KDD dataset, the authors confirmed that
using an autoencoder as a feature extraction method can improve NIDS performance.
Shone et al. [35] proposed a non-symmetric deep autoencoder (NDAE) which provides
unsupervised feature learning and data dimensionality reduction. They developed an
ML-NIDS that combines stacked NDAEs and Random Forest (RF), achieving 97.85%
and 85.42% accuracy for the KDD Cup 99 and NSL-KDD dataset, respectively. This
indicates that the data duplication in the KDD Cup 99 facilitates the anomaly detection
task. Al-Qatf et al. [36] combined sparse autoencoders and SVM, where the autoencoders
perform feature learning and dimensionality reduction and SVM classifies the data as
normal or attack. This approach was evaluated on the NSL-KDD dataset and obtained an
F1-score of 85.28%.

Madani et al. [37] evaluated the robustness of autoencoder models against intentional
data poisoning. They analyzed and compared the performance of an autoencoder-based
model and a PCA-based model under adversarial contamination attacks using the NSL-
KDD dataset. The results showed that the autoencoder-based NIDS outperformed the
PCA-based NIDS approximately 15% in detection rate.

Yu et al. [38] used a stack of dilated convolutional autoencoders to extract important
features from a large volume of unlabeled traffic data in the CTU-UNB and Contagio-CTU-
UNB datasets which contain normal and botnet network traffic data. Thing et al. [39] also
used stacked autoencoders to learn important features for the IEEE 802.11 wireless network
attack classification. Zhang et al. [40] applied a similar architecture which consists of sparse
stacked autoencoders and binary tree ensemble method. When evaluated on the NSL-KDD
dataset, their approach achieved an F1-score of 91.97%.

In IoT environments, Dutta et al. [41] developed an anomaly detection system using a
deep sparse autoencoder, a DNN, and a LSTM followed by a logistic regression classifier
which detects anomalous traffic. The deep sparse autoencoder compresses the input data
to alleviate the computational cost in the classifier. Several network traffic datasets (e.g.,
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IoT-23 [42], LITNET-2020 [43] and NetML-2020 [44]) collected in IoT environments were
used to evaluate their system.

2.3. Autoencoders for Anomaly Detection

This section reviews the application of autoencoder models that detect network intru-
sions in an unsupervised manner, which is closely related to our approach. Lopez-Martin
et al. [45] proposed a classification model using conditional variational autoencoders to
detect and classify the five types of labels (normal, DoS, R2L, Probe, and U2R) in the
NSL-KDD data. In particular, given a labeled training dataset, the decoding network
of the proposed model is additionally trained with the class labels associated with the
trained data logs. When reconstructing from a compressed vector, the decoding network
predicts the class label associated with the reconstructed data features. Thus, this approach
requires pre-labeled data for training, unlike our unsupervised-based approach. The task
of classifying normal labels against the other four labels achieved an F1-score of 0.83.

Aygun et al. [26] compared two different autoencoder models for detecting unknown
types of attacks. An autoencoder and a denoising autoencoder were evaluated with
NSL-KDD dataset, and achieved the F1 of 89.51% and 89.28% respectively. To classify a
given data as either normal or abnormal, they stochastically select a threshold, and this
supplements our own study. Mirsky et al. [25] employed an ensemble scheme to develop an
ML-NIDS named Kitsune. The proposed model first maps the features of a given network
packet into an ensemble of autoencoders. Then each autoencoder reconstructs the packet
features and computes root mean squared error (RMSE) as the reconstruction error. Finally,
the model summarizes the RSMEs from each autoencoder and checks whether the final
result exceeds a predefined threshold. In particular, they studied how to distribute the
entire set of data features to each autoencoder and how to derive the final decision by
collecting and analyzing the results from each authencoder. Their work was applied to
online intrusion data which are not publicly accessible for comparative evaluation.

These autoencoder-based methods are applied to build NIDS in IoT environments
recently. Meidan et al. [46] used deep autoencoders to detect IoT botnet attacks. The
proposed model is composed of a set of autoencoders, each autoencoder learns the normal
network behaviors of the designated IoT device and detects anomalous traffic from the
device.The proposed model was evaluated on a testbed network consisting of nine com-
mercial IoT devices infected by Mirai and BASHLITE botnets. The model achieved a true
positive rate of 100% and a false positive rate of 7%.

Similarly, Shahid et al. [47] presented an ML-NIDS to detect anomalous traffic in IoT
networks. To consider device diversity commonly assumed in IoT networks, the proposed
system consists of multiple sparse autoencoders, each dedicated to one designated device
type in a target network environment to be monitored. Each sparse autoencoder is trained
to learn the normal communication pattern of the corresponding type of device. When
new network traffic is observed, every autoencoder in the system first compresses and then
reconstructs incoming data as close to the original traffic data as possible. If at least one of
the autoencoders successfully reconstructs the given traffic data, the system considers it
as legitimate; otherwise, if all of the autoencoders fail to reconstruct the given traffic data,
it is considered as anomalous traffic. The authors tested the proposed system with the
dataset collected from IoTPOT [48], and the proposed system reported true positive rate of
86.9% to 91.2% depending on a parameter setting, and its false positive rate was from 0.1%
to 0.5%.

As described above, diverse autoencoder models and their ensemble are used for
detecting network intrusions in an unsupervised manner and report promising results in
various evaluation metrics. However, it was not clearly disclosed how a particular model
architecture and its hyperparameters were designed. Unfortunately, the importance of
model configuration is largely overlooked in the previous works. In this article, we evaluate
how the size and the latent dimension of autoencoders influence the NIDS performance, to
tackle the practical issues explained above.
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3. Datasets

Several labeled network traffic datasets are available for evaluating intrusion detection
systems. We selected three datasets for our experiments, NSL-KDD, IoTID20, and N-BaIoT.
NSL-KDD [14] dataset was created by removing redundancy from training and test sets of
the KDD Cup 99 dataset [13], which is the most widely known dataset for measuring IDS
performance. We also employed two IoT datasets, IoTID20 [49] and N-BaIoT [46], which
are up to date and were collected using real devices in IoT environments.

3.1. NSL-KDD Data

The original NSL-KDD data consists of training data and test data. To create a
validation set, we randomly sampled 10% from the NSL-KDD training data and use
them as our validation set. In NSL-KDD, there are four attack categories provided in the
dataset; DoS (denial of service), U2R(unauthorized access to local root privileges), R2L
(unauthorized access from remote machine), and Probe (surveillance and other scanning).
We categorized the attack types present in the dataset into four categories as set out in
Yang et al. [50]. Table 1 presents the number of samples from each set and attack category.

Table 1. Count Statistics of the NSL-KDD dataset.

Category Training Validation Test

Benign - 60,642 6701 9711

Attack

DoS 41,325 4602 7458

U2R 50 2 200

R2L 908 87 2754

Probe 10,451 1205 2421

In the preprocessing step, we convert non-numerical data into numerical data to build
an input for the autoencoder. Protocol, Service and Flag features are treated as categorical
data. Protocol feature denotes a network protocol whose value can be either tcp, udp, or
icmp. When using one-hot encoding, the Protocol feature is represented as a 3-dimensional
vector. The Service feature contains 86 distinct values, and thus is represented as an 86-
dimensional vector. Flag has 13 different values and is represented as a 13-dimensional
vector. The Source_port_number and Destination_port_number range from 0 to 65,535, and we
represent it as a 3-vector, dividing the number into well-known port (0–1023), registered
port (1024–49,151), and dynamic port (49,152–65,536).

For numeric data, we normalize the numerical values between 0 and 1. The Du-
ration, Source_bytes, and Destination_bytes features and the features suffixed with count
(e.g., Dst_host_count, Dst_host_srv_count ) are normalized using the min-max scaling, after
statistical outliers are eliminated. The feature values suffixed with rate (e.g., Serror_rate,
Dst_host_serror_rate) are between 0 and 1, and thus are used as-is, without conversion. Fi-
nally, the data are represented as 114-dimensional vectors by combining 12 general features
and 112 one-hot encoded categorical features.

3.2. IoTID20 Data

IoTID20 data were collected using two victim IoT devices connected to a Wi-Fi router
of a smart home network environment [49]. Each sample consists of 83 network features
and three label features. We randomly split the entire data into training, validation and test
sets at a ratio of 8:1:1. Table 2 shows the number of samples in each set and category.
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Table 2. Count Statistics of the IoTID20 dataset.

Category Train Validation Test

Benign - 32,056 4001 4016

Attack

Mirai 332,569 41,744 41,364

Scan 60,249 7409 7607

DoS 47,519 5865 6007

MITM 28,233 3560 3584

In the preprocessing step, we first remove samples containing the NaN and INF feature
values. We also eliminate the Timestamp, FlowID, SrcIP, and DstIP features to prevent the
model from learning specific logs during validation. Then we scale the numerical features
using a min-max scaler. The three categorical features Src Port, Dst Port, and Protocol are
respectively processed into a categorical one-hot vector. The Port values are divided into
three categories. We convert the Protocol feature, one of three values (0,6,17), as a three-
dimensional one-hot vector. The resulting processed data have 77 numerical features and 9
categorical features.

3.3. N-BaIoT Data

N-BaIoT data consists of the traffic data collected from nine commercial IoT devices
before and after they are infected by Mirai and BASHLITE botnets. Each data sample
consists of 23 features of traffic statistics such as packet count, the size of inbound and
outbound packets, and the inter-arrival times of packets for five time windows.

The dataset contains the samples collected from the nine devices during 10 types of
attacks executed by Mirai and BASHLITE. We selected the data samples from five out
of the nine devices for our evaluation: Danmini Doorbell, Ecobee Thermostat, Provision
PT-737E, Philips B120N/10 Baby Monitor, and SimpleHome XCS7-1002-WHT. The data
samples of each device are divided into training, validation, and test set at a ratio of 8:1:1,
respectively. Table 3 shows the number of samples in each set and category.

Table 3. Count Statistics for each device type of the N-BaIoT dataset.

Device Label Train Validation Test

Danmini Doorbell
Benign 39,675 4895 4978

Attack 774,963 96,935 96,852

Ecobee Thermostat
Benign 10,528 1303 1282

Attack 658,173 82,284 82,306

Provision PT-737E
Benign 49,753 6212 6189

Attack 612,85 76,614 76,637

Philips B120N/10 Baby Monitor
Benign 140,069 17,574 17,579

Attack 738,873 92,293 92,271

SimpleHome XCS7-1002-WHT
Benign 37,302 4620 4663

Attack 655,143 81,685 81,643

Numerical features were scaled using a min-max scaler into 116 features. Preprocess-
ing was done separately for each device.
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4. Approach

This section describes our experiment approach to studying the impact of the deep-
learning model design on the performance of intrusion detection. Specifically, we test
how the autoencoder model structure and the size of its latent dimension affect the ML-
NIDS performance.

4.1. Overview

Our process to build the optimal autoencoder model is described below and in Figure 2.

Figure 2. The process of building autoencoder models. Train denotes the data for training, and
Validation denotes the data for validation. The process consists of three phases: training, model
selection, and validation.

1. Preprocessing: Given a training data set, we first remove attack samples from the
training set so that only normal samples are used to train the autoencoder. Then we
vectorize the data by converting the feature values into numerical vectors using the
min-max normalization. The features are scaled using the minimum and maximum
values obtained from the training set. Additional preprocessing methods applied to
each particular data set are described in detail in Section 3.

2. Training: The autoencoder model is trained to reconstruct any given input as close
as possible to the normal log patterns of the training set and L2 norm is used as
reconstruction loss. Theoretically, the autoencoder model trained with normal logs
is expected to recover any input log as close as possible to the learned normal log
patterns. Due to this, if a given input in fact belongs to an attack class, it is likely
that the recovered output would be significantly different from the original input.
This means that the class of an input sample is determined based on the difference
between the input and its output; if the difference is greater than a set threshold, it is
classified as an attack. Otherwise, it is classified as normal.

3. Model Selection: At each epoch during the training phase, the Area under the Curve
(AuC) score of the Receiver Operating Characteristic (ROC) curve is calculated using
the validation data which contain the normal and attack logs. The AuC score enables
us to measure the model’s overall performance as the model weights change. During
the training phase, we record the highest AuC score and its corresponding model
weights to obtain the best-performing model. When the training phase is completed,
we use the model weights that resulted in the highest AuC score.

4. Threshold Selection: Since the threshold on the reconstruction distance between an
input and its output divides the normal and abnormal (i.e., attack in this study)
classes, selecting its value has a tremendous impact on the ML-NIDS performance.
We evaluate the model’s performance using the validation set, varying the threshold
value to determine the optimal figure for the trained model. We use the Z-score of
standard normal distribution as the threshold metric. Using the Z-score instead of
the reconstruction error values before normalization can facilitate the reproduction of
the classifier even when reconstruction error values in unnormalized form change
depending on a data set.
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To set the threshold Z-score, we first standardize reconstruction distances with the
mean and variance values of reconstruction distances calculated using only the nor-
mal samples in the validation data. To find the best-performing threshold, we inspect
the range of (−4,4) with 0.01 interval, which covers 99.994% of the standard nor-
mal distribution. We determine the Z-score value that best divides the normal and
abnormal classes in the validation data as the threshold Th.

5. Evaluation: Finally, we evaluate the ML-NIDS performance using the test data. We
compute the Z-score of each log’s reconstruction error using the mean and variance
of normal samples in the validation set calculated in Step 4. We classify each log as an
attack if its Z-score exceeds Th. Otherwise, it is classified as normal. By comparing
these predicted labels and the test data’s original labels, we calculate the model’s
evaluation metrics (i.e., accuracy, TPR, FPR, and MCC explained in Section 4.3).

4.2. Model Design

As Section 2 summarizes, various autoencoder models are used as (one-class) unsu-
pervised machine-learning algorithms for anomaly-based intrusion detection systems. We
experiment with different model configurations to test whether an autoencoder model’s
design choices influence intrusion detection performance.

In this study, we focus on two essential design aspects of autoencoder models: model
structure and latent size. Model Structure represents the number of hidden layers (depth) and
the number of neurons (width) in each hidden layer of the encoder and decoder networks.
We vary the model’s depth and width to inspect how the model’s capacity and complexity
affect the detection performance. In our study, Latent size denotes the dimension of the
latent layer, which is illustrated as the L3 layer in Figure 3.

Figure 3. An example autoencoder model architecture with symmetrical encoder and decoder
networks. X and X̂ respectively represent the model’s input and its reconstructed output.

Autoencoder models can be regarded as a dimension reduction algorithm trained to
compress their input into a latent representation. Therefore, if the size of the latent layer is
too small, the model may not represent the data well because the latent vector is too generic
to characterize the data. On the other hand, a model would not benefit from generalization
during the compression/reconstruction process if its latent layer contains an excessive
number of nodes. Thus, we also test different latent sizes for each Model Structure to assess
its impact.

4.3. The Evaluation Metrics

For evaluation, we report the standard metrics such as accuracy, true positive rate, and
false positive rate for comparison between different model configurations. True Positive
Rate (TPR) records the attack detection rate. False Positive Rate (FPR), also known as
false-alarm rate, is an important measure for evaluating an IDS, since an anomaly-based
IDS tends to yield high false-alarm rate [51]. TPR, FPR, Accuracy, and F1 are calculated by
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the following equations where TP denotes true positives, TN denotes true negatives, FP
denotes false positives, and FN denotes false negatives.

True Positive Rate (TPR) =
TP

TP + FN
(1)

False Positive Rate (FPR) =
FP

FP + TN
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

F1 =
TP

TP + 1
2 (FP + FN)

(4)

Furthermore, we use Matthews Correlation Coefficient (MCC) as the primary metric
to represent the best performance that the model can achieve when the threshold is fixed.
The score is computed using Equation (5) and is in the range of (−1,1), where +1 indicates
a perfect prediction and −1 means that all predictions are wrong.

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(5)

MCC is considered a balanced measure because a high score can be obtained when
the prediction results are good across all the classes and not just in one particular class.
Hence, MCC can effectively represent the model’s performance even when there is class
imbalance [52] and is used for measuring IDS classification performance [41]. Most bench-
mark IDS datasets are imbalanced, with more attacks than normal logs, since the data are
usually collected via simulations.

5. Results and Analysis

This section describes the evaluations we carried out to study how the autoencoder
model’s design (i.e., model structure and latent size) influences the NIDS performance with
a combination of different model configurations. We report the average performance of
multiple runs on the given test set using different random seeds due to the performance
variance between runs. The random seeds are associated with random batch sampling of
training data and model weight initialization.

5.1. Model Configurations

We test multiple combinations of different Model Structures and Latent Sizes using
an autoencoder model, being comprised of fully connected hidden layers with the ReLU
activation function and an output layer with the Sigmoid activation function. For evalu-
ation, we tested three Model Structure configurations. We represent each Model Structure
configuration as the form of (Depth, Size). Depth denotes the number of fully connected
hidden layers of the model. Size represents the number of nodes of the encoder’s first
hidden layer (L1 in Figure 3). The next hidden layer in the encoder is half the size of
its previous hidden layer. In this fashion, the size of each hidden layer in the encoder is
reduced by half down to the middle layer (i.e., L3 in Figure 3), representing the compressed
vector. The decoder is symmetric to the encoder.

The three model configurations used in our evaluation are structured as follows in
Table 4.

Using these configurations, we test if the model capacity affects IDS performance by
comparing the (5,32) model with the (5,64) model, since they have the same number of
hidden layers but differ in the number of trainable parameters. To analyze the impact of
the model complexity, we compare the (5,64) model with the (7,64) model because they
have similar number of trainable parameters and different number of hidden layers.
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Table 4. Model Structure Configurations.

Model Structure (Depth, Size) Number of Neurons for Each Layer

(5,32) input – 32 – 16 – latent layer – 16 – 32 – output

(5,64) input – 64 – 32 – latent layer – 32 – 64 – output

(7,64) input – 64 – 32 – 16 – latent layer – 16 – 32 – 64 – output

For each Model Structure, we inspect the potential latent sizes, ranging from 1 up to
(the size of the hidden layer adjacent to the latent layer) −1. For example, in the (5,32)
model and the (7,64) model, we vary the latent layer dimensions ranging from 1 to 15. For
the (5,64) model, we test the latent sizes of 1 to 31. These models are trained to minimize
the reconstruction loss using the Adam optimizer [53], at the learning rate of 1 × 10−4, and
the weight decay value of 1 × 10−5. No other regularization methods were used.

5.2. Results: NSL-KDD Data

This section presents the results of our experiments when the NSL-KDD data are
employed. We report the average of 20 test runs. In each run, a model is trained for
100 epochs with the batch size of 512. We obtained the best MCC of 0.712 when using the
(5,64) model with the latent size of 3, as displayed in Table 5. We chose the best-performing
latent size based on the MCC score for each model structure and present its performance
scores along with its latent size and threshold.

In terms of Model Structures, the (5,64) and (7,64) models generally outperform the
(5,32) model, except for the FPR. This suggests that the model capacity has an impact on the
IDS performance, as the (5,64) model has about twice the number of trainable parameters
of 18,880 compared with the (5,32) model’s 8,448 trainable parameters. When the model
capacities are similar, as in the (5,64) and (7,64) models, the impact of the number of hidden
layers on the detection performance is marginal.

Table 6 reports the best performance among the 20 runs for each model configuration.
The TPR, FPR, accuracy, MCC, and F1-scores are presented. The best F1-score is 0.895 using
the (5,32) model and the latent size of 4. This is comparable to the best F1-score of 0.895
reported in [26]. Table 7 displays the confusion matrix of the best-performing model for
each configuration. The models tend to predict attacks as normal logs more often than to
predict normal logs as attack.

Table 5. Evaluation results with NSL-KDD. The best configuration from each model structure was chosen based on the
MCC score. The reported metrics are averaged over 20 runs. The best MCC score is marked in bold.

Model Structure Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 4 2.846 0.840 0.757 0.051 0.705 0.842 0.960

(5,64) 3 2.488 0.848 0.782 0.065 0.712 0.853 0.960

(7,64) 9 2.840 0.847 0.777 0.061 0.711 0.852 0.959

Table 6. The best performance for each model configuration. The best F1-score is in bold.

Model Structure Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 4 2.120 0.887 0.851 0.066 0.778 0.895 0.961

(5,64) 3 2.090 0.885 0.859 0.081 0.771 0.894 0.961

(7,64) 9 2.340 0.882 0.826 0.045 0.774 0.888 0.971
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Table 7. The confusion matrix of the best performing model for each configuration. Positive label indicates attack sample.

Model Structure TP FP FN TN

(5,32) 10,920 636 1913 9075

(5,64) 11,019 768 1814 8925

(7,64) 10,604 428 2229 9283

In the second experiment, we look at the interplay of a model’s latent size and its
performance. Figure 4a visualizes the (5,32) model’s MCC scores as the latent size increases.
As in the graph, the model shows the best performance when the latent size is 4 and then
its performance fluctuates. Good performances were obtained when the latent sizes are
small in the other two models as well; the (5,64) model achieves its best performance when
the latent size is 3 (Figure 5a), and the (7,64) model achieves the MCC of about 0.7 which is
close to its highest score at the latent size of 3 (Figure 6a).

(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 4. The results of evaluation using the NSL-KDD dataset when the (5,32) model is employed.

(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 5. The results of evaluation using the NSL-KDD dataset when the (5,64) model is employed.

(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 6. The results of evaluation using the NSL-KDD dataset when the (7,64) model is employed.
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We further inspect the model’s performance by the attack type. Figure 4b depicts
the detection rate (TPR) per attack type as the latent size grows. The (5,32) model does
particularly well on the detection of the DoS and Probe attacks: 0.892 at the latent size of
14 for DoS and 0.904 at the latent size of 7 for Probe. The performance for the other two
attacks were low: 0.335 at the latent size of 9 for R2L and 0.646 at latent size of 12 for U2R.

We see similar patterns for the (5,64) and (7,64) models. Figure 5a shows that the (5,64)
model reaches its highest MCC performance with a small latent size of 3. This phenomenon
is attributed to the dramatic increase in TPR of the R2L attacks, as shown in Figure 5b.
The highest TPR was 0.892 for Probe and 0.901 for DoS when the latent size was 3. Both
maintain a high stable performance after their peaks. On the other hand, for the U2R and
R2L attacks the (5,64) model shows low TPR of 0.632 and 0.381, respectively. Additionally,
there are large fluctuations in the R2L performance.

The (7,64) model also obtains a high MCC score at the small latent size of 3 and then
fluctuates as the latent size grows (Figure 6a). Please note that the maximum number of
the latent size in the (7,64) model is 15 not 31 as in the (5,64) model, due to another hidden
layer of size 16 added to the encoder and the decoder. Like the (5,64) model, the DoS and
Probe attack detection rates were high: 0.904 for DoS with the latent size of 9 and 0.901
for Probe with the latent size of 7. Those rates for the R2L and U2R attacks were low,
0.372 for R2L at the latent size of 9 and 0.653 for U2R at the latent size of 7. This provides
evidence that an anomaly-based approach is not a relevant solution for detecting these
types of attacks.

We examine the role of the threshold value for ML-NIDS, by inspecting the recon-
struction distance distribution of the R2L attacks of the (5,64) model. Despite its poor
performance, this attack type was chosen because its TPR improved greatly as the latent
size increased. We compare the average standardized reconstruction distance density plots
of the R2L attacks using the (5,64) model with two distinct latent sizes (Figure 7). When the
model performs best at the latent size of 3 as illustrated in Figure 7a, most normal samples
are distributed below Z-score of 0. The attack samples are grouped into two parts, one
part around Z-score of 1 and the other around Z-score of 4. The latter group is correctly
classified as attack. On the other hand, when the latent size is 1 which produced the worst
performance, Figure 7b shows that the distributions are skewed to the left side, mostly less
than Z-score of 2, classifying the majority of the attack data as normal since its Z-score
is less than the threshold. This shows that it is critical to choose the right latent size for
building an autoencoder model for ML-NIDS.

(a) (b)
Figure 7. NSL-KDD Reconstruction Distance Density Plot (Normal and R2L attack data) comparing
the best and the worst performance cases with the (5,64) model. Blue denotes normal data and orange
denotes R2L attack data. A line depicts the kernel density estimated plot, and bar plot depicts the
histogram. The dotted line indicates the threshold value, which divides the normal and the attack
classes. The X-axis denotes Z-score. The Y-axis is density and limited to 2 for better visibility. (a)
The best case (Latent size = 3, MCC = 0.712, Threshold = 2.488). (b) The worst case (Latent size = 1,
MCC = 0.624, Threshold = 2.294).
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5.3. Results: IoTID20 Data

This section describes our experiments using the IoTID20 dataset [49] which were
collected in IoT network environments. We report the average performance of 10 runs for
each of the three model configurations that is trained for 50 epochs with a batch size of
512. The average performance of each Model Structure at its best-performing latent size is
presented in Table 8. The three Model Structures performed similarly, achieving an MCC
score of up to 0.595, and this poor performance is due to its high FPR (>0.3). It is also noted
that the accuracy is high (94%), despite the low MCC score.

Table 9 reports the best performance among the 10 runs for each model configuration.
The TPR, FPR, accuracy, MCC, and F1-scores are presented for comparison with other
works. The best F1-score of 0.974 was obtained for all the models. Table 10 displays the
confusion matrix of the best-performing model for each configuration. The models make
errors similar to those with NSL-KDD, predicting attacks as normal logs more often than
predicting normal logs as attack.

Table 8. Evaluation results with IoTID20 dataset. The best configuration from each model structure was chosen based on
the MCC score. The reported metrics are averaged over 10 runs. The best MCC score is marked in bold.

Model Structure Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 14 0.041 0.945 0.963 0.313 0.595 0.971 0.912

(5,64) 28 −0.013 0.947 0.966 0.333 0.594 0.972 0.913

(7,64) 14 0.060 0.944 0.961 0.307 0.590 0.970 0.911

Table 9. The best performance for each model configuration. The best F1-score is in bold.

Model Structure Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 14 −0.350 0.951 0.971 0.329 0.614 0.974 0.909

(5,64) 28 −0.150 0.952 0.971 0.324 0.617 0.974 0.915

(7,64) 14 0.060 0.952 0.970 0.321 0.618 0.974 0.918

Table 10. The confusion matrix of the best performing model for each configuration. Positive label indicates attack sample

Model Structure TP FP FN TN

(5,32) 55,683 1060 2841 2956

(5,64) 55,553 1017 2971 2999

(7,64) 52,480 815 6044 3201

We also explore the relationship between the model’s performance and its latent size.
Figure 8a illustrates that the (5,32) model’s overall MCC gradually improves as the latent
size grows, while TPR for the Scan attacks declines (Figure 8b). This is because the overall
FPR also declines as the latent size increases.

The (5,64) and (7,64) models show little fluctuations in MCC, achieving near-best
performance at small latent sizes. For example, the (5,64) model achieved MCC of 0.59 at
the latent size of 9, which almost matches the best performance of 0.593 at the size of 28
(see Figure 9a). The (7,64) model also achieved MCC of 0.587 at the latent size of 5, and a
near-best performance of 0.59 at the size of 14, as illustrated in Figure 10a. Across all three
Model Structures, the detection rates of the DoS and MITM attacks were higher than those
of the other attack types. In particular, the Scan attacks were the most difficult to detect
(see Figures 9b and 10b).
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(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 8. The results of evaluation using the IoTID20 dataset when the (5,32) model is employed.

(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 9. The results of evaluation using the IoTID20 dataset when the (5,64) model is employed.

(a) MCC as the latent size grows (b) TPR per attack type as the latent size grows

Figure 10. The results of evaluation using the IoTID20 dataset when the (7,64) model is employed.

Figure 11 visualizes the reconstruction distance distributions of the normal and all the
attack types with the (5,64) model for the latent sizes of 28 and 9, which produce the best
and a near-best performance, respectively. Despite the significant difference in the latent
size, the graphs in the figure show similar patterns; the normal samples are distributed
between −1 and 3, and the most attack samples are distributed between 1 and 4. This
suggests that using a small latent size can characterize the data well and efficiently.
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(a) (b)
Figure 11. IoTID20 Reconstruction Distance Distribution Density Plot (Normal and attack data)
comparing two similarly performing cases with the (5,64) model. Blue denotes the normal data and
orange denotes the attack data. A line depicts the kernel density estimated plot, and bar plot depicts
the histogram. The dotted line indicates the threshold value, which divides the normal and the attack
classes. The X-axis denotes Z-score. The Y-axis is density and limited to 0.8 for better visibility. (a)
The best case (Latent size = 28, MCC = 0.593, Threshold = 0.132). (b) A near-best case (Latent size = 9,
MCC = 0.59, Threshold = 0.132).

5.4. Results: N-BaIoT Data

We performed experiments with the N-BaIoT data, separated into different sets based
on the IoT device type—Danmini Doorbell, Philips Baby Monitor, SimpleHome Security
Camera, Ecobee Thermostat, and Provision PT-737E. We report the average of 5 runs for
each device type, where each run was trained for 50 epochs with a batch size of 1024. The
average performance metrics of 5 runs of each model configuration for the selected IoT
devices are available in Table 11.

As the table shows, the overall results are good as demonstrated by the accuracy
greater than 99% and the MCC over 0.95. The best-performing model for the Danmini
Doorbell device achieved the highest accuracy of 99.97% and an MCC of 0.996. This
suggests that the attacks for the Danmini Doorbell are easily distinguishable via neural
anomaly detection algorithms. The second-best performance was found for the Philips
Baby Monitor, achieving an MCC of up to 0.989 and there was no significant difference
in performance between the model configurations. It is also noted that the (5,64) model
produced the best performance across all the device types.

Figures 12–14 display the MCC score of each Model Structure per device type as the
latent size grows. Across all the model structures, Danmini Doorbell, Philips Baby Monitor,
and SimpleHome Security Camera generally produce stable performance regardless of
the latent size. We see a different trend for the Provision PT-737E and Ecobee Thermostat
device types. The Provision PT-737E showed a significant improvement between the latent
size of 1 and 4, across all the model structures. The Ecobee Thermostat with the (5,32) and
(5,64) models show a dramatic improvement between the latent size of 1 and 3, followed by
a relatively stable performance (Figures 12 and 13); the (5,64) model achieved the highest
MCC of 0.959 when the latent size was only 3 or 4. Such a significant change was not found
when using the (7,64) model (Figure 14), since this model showed a stable performance
regardless of the latent size factor.



Sensors 2021, 21, 4294 17 of 23

Table 11. Evaluation results per device type with N-BaIoT Data. The best configuration from each
model structure was chosen based on the MCC score. The reported metrics are averaged over 5 runs.
The best MCC score of each device type is marked in bold.

(a) Danmini Doorbell

Model Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 11 0.988 1.000 1.000 0.006 0.996 1.000 0.999

(5,64) 19 1.108 1.000 1.000 0.006 0.996 1.000 0.999

(7,64) 8 1.028 1.000 1.000 0.006 0.996 1.000 0.999

(b) Philips B120N / 10 Baby Monitor

Model Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 10 3.130 0.996 0.998 0.013 0.986 0.998 0.999

(5,64) 25 3.270 0.997 0.999 0.011 0.989 0.998 0.999

(7,64) 8 3.344 0.996 0.998 0.012 0.987 0.998 0.999

(c) SimpleHome XCS7-1002-WHT Security Camera

Model Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 11 0.438 0.995 0.999 0.074 0.952 0.997 0.990

(5,64) 20 1.050 0.996 0.999 0.051 0.963 0.998 0.998

(7,64) 12 0.846 0.996 0.999 0.058 0.959 0.998 0.996

d Provision PT-737E

Model Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 10 0.854 0.991 0.994 0.050 0.937 0.995 0.992

(5,64) 29 1.338 0.997 0.999 0.027 0.976 0.998 0.999

(7,64) 9 1.102 0.995 0.998 0.040 0.967 0.998 0.999

(e) Ecobee Thermostat

Model Latent Size Threshold Accuracy TPR FPR MCC F1 AUC

(5,32) 13 0.802 0.998 0.999 0.067 0.928 0.999 0.997

(5,64) 4 0.408 0.999 1.000 0.064 0.959 0.999 0.999

(7,64) 4 0.366 0.999 1.000 0.079 0.952 0.999 0.999

Figure 12. MCC per device for the N-BaIoT dataset when the (5,32) model is employed.
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Figure 13. MCC per device for the N-BaIoT dataset when the (5,64) model is employed.

Figure 14. MCC per device for the N-BaIoT dataset when the (7,64) model is employed.

Figure 15 displays the reconstruction distance distributions in Z-score of the normal
and all the attack data when the (5,64) model was employed, comparing the distributions
of the best and the worst performing cases. The distributions of the attack samples are
very different, whereas the normal data tend to be concentrated within a narrow range
of Z-score in both cases. In the best case (Figure 15a), the normal and the attack data
rarely overlap. In addition, only a very small amount of normal data are greater than
the threshold, which accounts for the high MCC score. On the other hand, Figure 15b
shows the worst case where non-negligible number of normal samples are greater than
the threshold, being falsely predicted as attack. In addition, some normal and attack data
overlap between 1 and 2.

(a) (b)
Figure 15. N-BaIoT Provision PT-737E Reconstruction Distance Distribution Density Plot (Normal
and attack data) comparing the best and the worst performing cases when the (5,64) model was
used. Blue denotes the normal data and orange denotes the attack data. A line depicts the kernel
density estimated plot, and bar plot depicts the histogram. The dotted line indicates the threshold
value, which divides the normal and the attack classes. The X-axis denotes Z-score. The Y-axis
is density and limited to 1.6 for better visibility. (a) The best case (Latent Size = 29, MCC = 0.976,
Threshold = 1.338). (b) The worst case (Latent Size = 1, MCC = 0.860, Threshold = 0.678).
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5.5. Discussions
5.5.1. Model Structure and Performance

This section summarizes and discusses our primary findings. First, we look at the
relationship between the model structure and performance in terms of the model capacity
and its depth. In general, the (5,64) model—that contains 5 hidden layers and 64 neurons
for the first hidden layer—produced the best or near-best performances across all the
benchmark datasets. This indicates that the model capacity influences the IDS performance;
models with large capacities tend to perform better. However, we did not find that the
model depth (i.e., number of hidden layers) is associated with the performance. The model
with less hidden layers (i.e., (5,64) model) outperformed the model with more hidden
layers (i.e., (7,64) model), but the difference was not significant.

Second, we assess the IDS performance as the latent size varies. We observe that the
overall intrusion detection performance tends to enhance as the latent dimension grows
up to a certain point and decrease afterwards. This suggests that configuring the latent
size can improve the performance greatly even when the model structure is fixed. The
optimal latent size was diverse depending on the dataset, model capacity, and depth. For
instance, the optimal latent size for the NSL-KDD data was 3 when using the (5,64) model.
The optimal size for the IoTID20 data was 14 with the (5,32) model, but for N-BaIoT data,
it was 28 when using the (5,64) model.

5.5.2. Analysis of Reconstruction Errors and Threshold

Furthermore, we analyzed the distribution of the reconstruction errors in Z-score. The
distributions of the normal and the attack samples are very different between the best and
the worst cases. However, when the models produce identical performance, the samples
are similarly distributed despite the difference in the latent size.

The distribution graphs also demonstrated that the threshold plays a critical role which
determines the IDS performance in unsupervised learning methods (see Figures 7, 11 and 15).
Previous unsupervised learning-based works [46,47] generally use mean + standard deviation
as the threshold value, which is equal to Z-score of 1. In our observations, however, the
best threshold differs based on the data, attack types, and the model configurations. For
example, the best-performing threshold was about Z-score of 3 for the NSL-KDD and the
Philips B120N/10 Baby Monitor datasets, but it was close to 0 for the IoTID20 dataset.
Therefore, it is very challenging to find the threshold relevant to the dataset and the model
configuration dynamically.

5.5.3. Threats-to-Validity of Experimental Results

The following factors are the potential threats-to-validity of our experimental results:
selection of model structures and latent dimensions to be compared and the types and
properties of datasets. Since one of the major goals of our experiments is to elucidate the
effect of model structure on IDS performance, selecting model structures to be compared
may affect the validity of the experimental results. To see the impact of model capacity on
IDS performance, we selected the (5,32) and (5,64) models that have the same number of
hidden layers but only differ in the number of trainable parameters. To see the impact of
the number of hidden layers, we compared the (5,64) and (7,64) models that have similar
number of trainable parameters but different number of hidden layers. Similarly, the
proper choice of latent dimensions to be compared is also crucial to analyze their impact
on IDS performance, and we tested all possible latent dimensions for each model structure.
The type of dataset is also an important factor that may affect the validity of the experi-
mental results. To prevent experimental results from being biased to a specific dataset, we
conducted experiments using three different types of datasets. Furthermore, we performed
multiple runs of experiments for each dataset with random batch sampling of training data
and random initialization of model weights to avoid biased experimental results.
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6. Conclusions

Unsupervised deep-learning algorithms such as autoencoders have been actively
studied for network intrusion detection since it can promptly detect the zero-day attack and
alleviate the labor in labeling greatly [25,26]. Although various autoencoder models have
shown to be effective in detecting intrusions, identifying the optimal model architecture
to provide the best detection performance requires tremendous effort, and this hinders
its practical application to NIDS. To address this engineering issue, we examine how the
model architecture and the latent dimension affect the NIDS performance. This paper
particularly focused on the model capacity, depth, and the size of the middle layer which
represents the compressed, latent information of a given data.

We designed and carried out evaluation using a stacked autoencoder model with
variations in model configurations. Empirical results on three datasets, NSL-KDD, IoTID20,
and N-BaIoT, all collected from conventional and IoT networks, demonstrated that the
model capacity and the latent size influenced the NIDS performance. Our simple stacked
autoencoder models achieved the best F1-score of 0.895 with the NSL-KDD dataset, which
is comparable to the best performance reported in the previous work [26]. In contrast,
the performance does not depend on the model depth in our study. In addition, we
noted that the simple autoencoders work surprisingly well on a particular IoT benchmark
dataset, achieving the performance greater than 99% in accuracy and 0.96 in MCC, which
is promising.

Our experimental results indicate that the model size (in terms of trainable parameters)
and the size of the bottle neck layer have an impact on IDS performance. More specifically,
a stacked autoencoder model tends to perform better and stable when its model size grows
bigger. We also observe that the selection of the latent size can enhance the performance
efficiently. From these findings, the researchers and practitioners working on NIDS can
have benefited when exploiting their models to enhance the IDS performance without
making major changes to the models. In addition, we discovered that a very small latent size
can characterize the data very well in some cases, such as the IoTID20 dataset in our study.
This may help build a lightweight IDS for IoT devices. For instance, Nykvist et al. [54]
developed an efficient IDS that employed pattern matching algorithms for portable devices
with limited processing power.

Our findings were drawn from the experiments using a limited set of configurations
focusing on the model capacity, depth, and latent size. In particular, the impact of the
depth is not fully confirmed in this study, and needs to be further examined using a larger
autoencoder model. To build a large model, it is required to obtain datasets whose input
feature vectors are large, since the input layer of the autoencoder is determined by the
feature vector. Then, the sizes of the hidden layers of an autoencoder decrease down to the
bottleneck layer. Future works can extend our work to cover other aspects of model design
and an even wider variety of configurations and datasets. We will also look into methods
to estimate the optimal latent size without scanning all possible ranges.
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41. Dutta, V.; Choraś, M.; Pawlicki, M.; Kozik, R. A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection.
Sensors 2020, 20, 4583. [CrossRef] [PubMed]

42. Agustin Parmisano and Sebastian Garcia and Maria Jose Erquiaga. A Labeled Dataset with Malicious and Benign IoT Network
Traffic. 2020. Available online: https://www.stratosphereips.org/datasets-iot23 (accessed on 9 March 2021).

43. Damasevicius, R.; Venckauskas, A.; Grigaliunas, S.; Toldinas, J.; Morkevicius, N.; Aleliunas, T.; Smuikys, P. LITNET-2020: An
annotated real-world network flow dataset for network intrusion detection. Electronics 2020, 9, 800. [CrossRef]

44. NetML-2020 Dataset. 2020. Available online: https://eval.ai/web/challenges/challenge-page/526/overview (accessed on 9
March 2021).

45. Martín, M.L.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. Conditional Variational Autoencoder for Prediction and Feature
Recovery Applied to Intrusion Detection in IoT. Sensors 2017, 17, 1967. [CrossRef]

46. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT—Network-Based Detection
of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

47. Shahid, M.R.; Blanc, G.; Zhang, Z.; Debar, H. Anomalous Communications Detection in IoT Networks Using Sparse Autoencoders.
In Proceedings of the 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 26–28 September 2019. [CrossRef]

48. Pa, Y.M.P.; Suzuki, S.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Rossow, C. IoTPOT: Analysing the rise of IoT compromises. In
Proceedings of the 9th USENIX Workshop on Offensive Technologies (WOOT), Washington, DC, USA, 10–11 August 2015.

49. Ullah, I.; Mahmoud, Q.H. A Scheme for Generating a Dataset for Anomalous Activity Detection in IoT Networks. In Advances in
Artificial Intelligence; Goutte, C., Zhu, X., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 508–520.

http://dx.doi.org/10.1109/ACCESS.2020.3001350
http://dx.doi.org/10.1016/j.future.2021.03.024
http://dx.doi.org/10.1002/ett.4085
http://dx.doi.org/10.3390/e23030344
http://www.ncbi.nlm.nih.gov/pubmed/33804035
http://dx.doi.org/10.14257/ijsia.2015.9.5.21
http://dx.doi.org/10.3390/info7020020
http://dx.doi.org/10.4108/eai.3-12-2015.2262516
http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.1109/ACCESS.2018.2869577
http://dx.doi.org/10.1155/2017/4184196
http://dx.doi.org/10.3390/s20164583
http://www.ncbi.nlm.nih.gov/pubmed/32824187
https://www.stratosphereips.org/datasets-iot23
http://dx.doi.org/10.3390/electronics9050800
https://eval.ai/web/challenges/challenge-page/526/overview
http://dx.doi.org/10.3390/s17091967
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1109/nca.2019.8935007


Sensors 2021, 21, 4294 23 of 23

50. Yang, Y.; Zheng, K.; Wu, C.; Yang, Y. Improving the Classification Effectiveness of Intrusion Detection by Using Improved
Conditional Variational AutoEncoder and Deep Neural Network. Sensors 2019, 19, 2528. [CrossRef] [PubMed]

51. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019,
9, 4396. [CrossRef]

52. Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric.
PLoS ONE 2017, 12, e0177678. [CrossRef]

53. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

54. Nykvist, C.; Larsson, M.; Sodhro, A.H.; Gurtov, A. A lightweight portable intrusion detection communication system for auditing
applications. Int. J. Commun. Syst. 2020, 33, e4327. [CrossRef]

http://dx.doi.org/10.3390/s19112528
http://www.ncbi.nlm.nih.gov/pubmed/31159512
http://dx.doi.org/10.3390/app9204396
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1002/dac.4327

	Introduction
	Related Work
	Intrusion Detection with Deep-Learning and Ensemble Learning
	Autoencoders for Feature Reduction
	Autoencoders for Anomaly Detection

	Datasets
	NSL-KDD Data
	IoTID20 Data
	N-BaIoT Data

	Approach
	Overview
	Model Design
	The Evaluation Metrics

	Results and Analysis
	Model Configurations
	Results: NSL-KDD Data
	Results: IoTID20 Data
	Results: N-BaIoT Data
	Discussions
	Model Structure and Performance
	Analysis of Reconstruction Errors and Threshold
	Threats-to-Validity of Experimental Results


	Conclusions
	References

